About:
|
Paper Machine
On the paper machine, the size press is used to apply surface size to dried paper.182,183 Starch is the most frequently used binder in surface sizing. Besides raising surface strength, starch also imparts stiffness, lowers water sensitivity, reduces dimensional changes and raises air leak density of the sheet. In conventional practice, the sheet passes through a pond of starch dispersion held above the nip between two large rotating cylinders. In the nip a high, transient, hydrostatic pressure is developed. Excess starch dispersion is drained from the ends of the nip. The surface size is transferred to paper by capillary penetration, pressure penetration and by hydrodynamic force during nip passage.
The quantity of starch transferred to paper by a size press depends on several factors: concentration of dispersed starch in the surface size; viscosity of the starch dispersion; diameter of the size press rolls; size press pond height; cover hardness of the size press rolls; size press nip loading pressure; fluting corrugated paper machine speeds; wet-end sizing of the sheet; and water content of the sheet. The concentration of starch in the surface size liquid can range from 2% to ∼15%, depending on product requirements. Frequently, pigments and other materials are added, which further increases total dispersed and suspended solids content. The viscosity ranges from water thin to several hundred cP (mPa·s).
Viscosity of the starch dispersion is the primary rate-determining parameter for dynamic sorption of starch into paper during surface sizing. Surface size penetration into the capillaries of paper proceeds in lateral and normal directions. Lateral flow takes the shape of an ellipse, according to the bias of fiber orientation in machine direction.184 Contributions by wetting and capillary penetration decrease with increasing paper machine speed, while the contribution by hydrodynamic force increases with speed. As a consequence, starch pick-up will pass through a minimum at a specific speed. The hydrodynamic force depends on the angle of convergence (which is determined by the diameter of the rolls), by the nip length (which is influenced by the hardness of the roll covers), by the paper machine speed and by the opposing loading force between the two rolls. High liquid viscosity, large roll diameter, soft roll covers and high newspaper machine speed increase starch transfer, while high nip pressure counteracts these drivers. Starch cationization has no affect on pressure-driven penetration, provided the hydrostatic pressure is high and the viscosity of the dispersion is low.
The transferred liquid penetrates into the sheet according to the void space between fibers and pigment particles. During drying, starch attaches to the fibers and pigment, and reinforces the sheet by ‘spot welding’ and bridging between paper constituents. The ultimate location of the starch in the sheet can be affected by chromatographic partitioning behind a front of water that advances into the sheet. This effect will primarily occur in heavyweight paper and board and may lead to a gradient in starch concentration in the sheet from the surface to the interior and a weakening of internal bond at the ultimate location of free water. Starch application to the sheet induces some desizing due to coverage of hydrophobic patches by hydrophilic starch.
Application of surface size to paper carries with it the transfer of a substantial quantity of water. As an example, surface sizing of a 75 g/m2 (50 lb/3300 ft2) sheet (with 1% residual water content) by a 5% starch solution for a coat weight of 1.5 g/m2 (1 lb/3300 ft2/side) will raise the water content of the sheet to 43%. This large quantity of water will weaken the paper. Web breaks at the size press can occur, particularly when the sheet is also weakened as a result of edge cracks or holes.
|